
Geostatistics and Image Analysis
Henning Bredel* Daniel Nüst†

March 9, 2009

R is becoming one of the major platforms to perform spatial analysis. As it is designed to
analyse typical statistical data sets, fundamental problems arise when huge data, like large
images with multiple bands in remote sensing, are to be analysed. Several approaches are
under development to allow R to operate with large data sets. So far, no comparison has
been made which of them render R useful for image analysis and how their performance is.

In this paper we give a short examplary view on the underlying problem in Rs memory
handling and the most common packages for image handling. We introduce different ap-
proaches to overcome the memory limitations. In the main part we present and discuss our
work with bigmemory and ff—two projects that promise improvement in these premises.
We describe the process to combine packages that include image functions with ff and
bigmemory. In the end we point out future work and possibilities.

Keywords: R-project, image analysis, remote sensing, ff, bigmemory

*henning.bredel@uni-muenster.de
†daniel.nuest@uni-muenster.de

1

mailto:henning.bredel@uni-muenster.de
mailto:daniel.nuest@uni-muenster.de

1. Introduction

1.1. R and its limitations

“R is a language and environment for statistical
computing and graphics” [5]. There are many ap-
plications using R as a toolbox for statistical anal-
ysis. No surprise: Currently more than 1,600
packages1 are available to add functionality in a
modular way. A main reason for this huge func-
tionality is rooted in the fact, that R is free open
source software2, platform independent and has a
strong user base contributing valuable content.

Besides these facts R has a few other reasons
to explain its popularity: It provides a collection
of many common statistical methods (tests, clas-
sification) and visualization tools out of the box,
and allows quick production of statistics and well-
designed plots for beginners and full control for
experienced users.

The possibility to use R as toolbox makes it easy
to integrate Rs functionality into other Software
like Grass, QGis, etc. This kind of “software com-
bination” adds functionality to the users work-
bench. Even the most powerful software cannot
handle all specific kind of problems perfectly on
its own.

Although R performs well with typical statisti-
cal sample data, it is problematic when dealing
with huge image datasets like satellite data. The
reason can be found in Rs approach to data han-
dling, i. e. to load all data into the working mem-
ory (RAM) completely.

This is a well known problem which leads to
statements one should better use other software
than R to perform image analysis (see [15], [14]).
Mostly this would be no big problem, since R
comes from the Unix tradition where it is common
to use many small re-usable tools3. Therefore it is
possible to share functionality beyond the bounds
of a software.

On the other hand, several packages try to deal
with the problem of handling huge data in R in
general. These approaches are interesting for re-

1http://cran.r-project.org/
2http://www.gnu.org/copyleft/gpl.html
3These tools are available on other platforms as well using

for example [11] or [10]

mote sensing analysis, where one has to handle
large images. Satellite data is large in sense of ex-
tent (number of pixels), as well as in sense of di-
mension (number of bands/attributes) and holds
a huge set of spatially referencable information.
If it would be possible to combine Rs excellence
and convenience in processing “in situ” data sets
with this kind of large image data, new fields in
Rs (spatial) analysis could be established.

This paper presents the results of performance
tests done with the bigmemory package and ff
package.

1.2. Approaches and Solutions

On the one side one can use R as a toolbox from
external software. The user can act quite flexible
through that interface and still profit from R’s ca-
pabilities. For an image analysis the user might
switch to ILWIS [1], GRASS [7] or SAGA [13],
and thus stay within the realms of free and open
source software.

On the other side one can use existing R pack-
ages to perform an the analysis. There is for ex-
ample EBImage as part of the Bioconductor [3]
bundle, which uses ImageMagick for image pro-
cessing. It is a good tool, but not intended to be
used for georeferenced images. Other packages
are namely biOps, FITSio, rimage and rgdal
(this list might be not exhaustive). These pack-
ages actually use external software, and that is
not what we are looking for.

A package which looks interesting and promis-
ing regarding to raster analysis within R is Rgis [8].
But at the time this paper is written it is still
under development and no release has been pub-
lished yet (Pre-Alpha).

1.3. Objective and motivation

This paper is made within the course Geostatistics
and Image Analysis at the Institute for Geoinfor-
matics (ifgi)4 given by Edzer J. Pebesma. The
topic is examined by two groups of students. One
group deals with approaches to reduce the size of
data, that is compression or resampling. These

4http://ifgi.uni-muenster.de

2

http://cran.r-project.org/
http://www.gnu.org/copyleft/gpl.html
http://ifgi.uni-muenster.de

bear the negative effect of information loss and
require sequential processing with either a block-
wise or column/row-wise method. For more in-
formation about this work please see [12].

We are interested in working with the language
R itself. Since the authors’ experience with R was
only rudimentary before this work, we were in-
spired by an item on the list of possible topics in
the beginning of the seminar. The technical focus
and the chance to work on relatively new territory
is interesting and challenging.

R is free software, and therefore worth to look at
in general. While its capabilities in all varieties of
statistical applications (econometrics, genetics, fi-
nance, . . .) are well known for specialists in that
area, a group of users started to implement im-
age analysis methods for R. Moreover, there are
libraries with a spatial or geostatistical empha-
sis. The quite early stage of these packages and
a good community around R as a whole, would
allow active participation—in case we reach good
results.

Our group decided to further investigate the
hardware oriented approaches, the packages bigmemory
and ff in particular, because of their promising
state at the time the paper is written. Based
on these rather generic approaches we expect the
possibility to hide non-typical data handling from
the user, who can apply the existing file and data
handling as well as image analysis methods with-
out paying much attention to the file size.

Other methods on which a large dataset analy-
sis could be based on but that are not taken into
account are for example: distributed computing
(multiR5) or databases (RSQLite6).

1.4. Overview of the paper

The remainder of the paper is structured as fol-
lows. The next part presents our work with ff
and bigmemory. We describe the process combin-
ing these two packages with other packages that
include image functionality and show the achieved
results. Subsequently we discuss problems and as-
sess the possibilities which the shown approaches

5http://e-science.lancs.ac.uk/multiR/
6http://cran.r-project.org/web/packages/RSQLite/

index.html

give to apply R for image analysis. In the end we
sum up our findings and point out directions for
future work.

2. The tested packages

The following versions were used.

• R version is 2.7.1

• bigmemory version is 2.3

• ff version is 2.0.0

2.1. bigmemory

The package was developed by Michael J. Kane
and John W. Emerson. bigmemory uses compiled
C++ code to create, store, access and manipulate
massive matrices. It offers an interface to manage
these matrices in R and let the user work with
them in “a usual way”.

bigmemory also supports allocating the data to
shared memory, so several R processes can pro-
cess the data without keeping it redundant. “This
opens the door for more parallel analysis and data
mining of massive data sets” [9].

bigmemory keeps things simple to the user. The
used datastructure is kept as C++-matrix in back-
ground and an ordinary pointer is returned to
the user, which can be handled as ordinary R
matrix. The interface is easy and similar to Rs
existing matrix functions. E. g. commands like
bm <- big.matrix(ncol=10,nrow=10) and dim(bm)
represents the same meaning as the better known
functions like m <- matrix(ncol=10,nrow=10) and
dim(m) respectively.

Supported types are double, integer, short and
char. This makes bigmemory quite flexible for dif-
ferent kinds of data. bigmemory operates on RAM
which makes it fast. Per contra it uses more mem-
ory while performing, but keeps matrices manage-
able. A next version of bigmemory will combine
advantages of keeping things in RAM but also
storing data in temporary fiels while performing.

2.2. ff

The ff package provides atomic data
structures that are stored on disk but

3

http://e-science.lancs.ac.uk/multiR/
http://cran.r-project.org/web/packages/RSQLite/index.html
http://cran.r-project.org/web/packages/RSQLite/index.html

behave (almost) as if they were in RAM
by transparently mapping only a sec-
tion (pagesize) in main memory—the
effective virtual memory consumption
per ff object. ff supports atomic data
types double, logical, raw and integer
[. . .]. ff now has native C-support for
vectors, matrices and arrays with flex-
ible dimorder (major column-order, ma-
jor row-order and generalizations for
arrays). ff objects store raw data in bi-
nary flat files in native encoding, and
complement this with metadata stored
in R as physical and virtual attributes.
[. . .] [4]

The authors provide a professional extension to
their package that adds more data types. This
explains the dual-licensing model for the package.
The standart R- and C-code is licensed as GPL27,
whereas the extended code is proprietary. C++
code by Daniel Adler is licensed as ISC of free
BSD8. Authors of the package are Daniel Adler,
Christian Gläser, Oleg Nenadic, Jens Oehlschlägel
and Walter Zucchini.

Of the addional data types, byte is interesting
for image analysis, as most image data, meaning
the pixels’ values, is of that type. In our test the
casting of bytes to raw served as a wrapper for
testing the performance with byte data. Accord-
ing to a conversation with the authors, the be-
haviour should be very similar to using the actual
byte-type of ff.

Objects can be copied to RAM and behave like
normal R objects in that case. ff-objects can
be observed in the temporal directory and per-
sistency functions are provided. The matrix ob-
jects can be accessed using the same syntax than R
matrices—similar to bigmemory mentioned above.
ff used optimization techniques, for example a
preprocessed index, for good performance on large
datasets.

The authors of ff present a performance survey
the made in [2]. Our test did not show the ad-
vantages shown in comparison with bigmemory,

7http://www.gnu.org/copyleft/gpl.html
8http://en.wikipedia.org/wiki/ISC_licence

but some results are similar. ff has a notably
overhead with small image data and the relative
efficiency becomes better with bigger files. With
notably large files (larger than RAM, > 2 GB) it
is the only package that still is effektive, meaning
that still can handle the data at all.

3. Data and Methods

Comparing ffs and bigmemorys performance re-
quires the usage of the same methods and the
same data sets. The functions of the test script
(also called “scenario” in this paper) were hold
quite generic. ff and bigmemory are working on
their own specific matrices. The datastructures—
once initialized—are handed over to each function
as parameter.

3.1. Scenario

The script represents one generic sequence which
can be assigned to one of both packages and one
of both images to process. The workflow of the
sequence is to

1. read image into data structure

2. calculate statistics on the image

3. perform matrix operations or a simple filter

4. write image back to file

3.2. Data

Satellite images are large data sets. Their size
varies highly concerning to the level of processing
they go through. Just after creation, a satellite
image or an aerophoto may have a size of sev-
eral GB. This is too big for practical application
and unusual in normal use cases and therefore too
big to be tested in this work. An image for spa-
tial analysis may be have a size of about 600 MB.
However, this would hardly be manageable, too,
if such an image would not have the information
stored seperately, each in its own band (e.g. RGB
and several infrared channels in one band each).

For our analysis we chose two images into ac-
count: A satellite image of size 334 MB and a

4

http://www.gnu.org/copyleft/gpl.html
http://en.wikipedia.org/wiki/ISC_licence

smaller image of about 10 MB. However, for prac-
tical reasons we only took one band of the satellite
image (of size approx. 70 MB).

For a more detailed view, which data was used
you may have a look at the appendix at 13 ff.

3.3. Data handling

bigmemory and ff perform on C matrices, so im-
porting the image data into these datastructures
is the first task at hand. To simplify reading the
whole image into R and then writing it into the
matrices afterwards, we used the package rgdal.
rgdal lets the user take advantage of the Geospa-
tial Data Abstraction Library (GDAL) within R.

R has a lot of memory pitfalls. With rgdal the
user is able to act with a file pointer and subsets
of the file of interest. There is no need to import
the data into R as a whole. For satellite image
data each band can be considered for its own.

However, working with one band with size of
approximately 70 MB is still problematic in R. To
load the image data into a ff or bigmemory ma-
trix, one has to do it partitioned to avoid crashing
R. We decided to initialize the datastructure first
and then to load the image data row-by-row into
it. That performed very well and didn’t overrun
10 s for the 70 MB image. See the used import/
export functions in listings 3 and 4. Both func-
tions are written generically, so the same code is
used for an ff matrix and a bigmemory matrix.

The packages support different data types and
we mention some experiences later on in the text.
It may however be pointed out, that a satellite
band usually contains values from 0–255 (in each
channel) and consequently a byte is sufficient to
represent the information of a band. Data types
that require more memory are limited by an over-
head.

3.4. Operations

We implement some simple image analysis meth-
ods and one complex one by establishing kernel
operations. The next sections describe them in
more detail.

3.4.1. Simple operations

The simple operations have in common, that each
performs on only one pixel. Similar to reading the
image, the operations process the image row-by-
row. See an example in listing 1.

Listing 1: Negate image values in a given matrix
negate <− f unc t i on (ffOrBm) {

row−by−row
3 f o r (row in 1 : nrow (ffOrBm)) {

ffOrBm [row ,] = abs (ffOrBm [row ,] − 255)
}

6 re turn (ffOrBm)
}

Other algorithms are: incrementation of all pix-
els with a fixed value; global threshold for a sin-
gle value determining foreground (value of 255)
and background (value of 0) pixels. While these
are classical cases in image preprocessing, they do
only differ by few computations from each other
and consequently have the same complexity.

3.4.2. Kernel operations

Kernel operations are the basis of a wide range of
image analysis methods. If one kernel operation
can be effectively established, a huge set of other
kernels can easily be implemented (several types
of filters, etc.).

We chose an Edge-sharpening kernel. It is a
common and important tool in image preprocess-
ing to enhance boundaries between different enti-
ties represented in the pixel values of an image. A
common sharpening filter is the Laplacian filter9.

We implemented two algorithms: First we im-
plemented a naive brute force algorithm which
takes each pixel with the corresponding kernel
neighbors, calculates the new value for the pixel
and writes it back. This resulted in a double loop
to move the (3x3 kernel) over the whole image—
not really efficient. In contrast to the other tests,
we used a much smaller image (512x512 pixels)
here. Otherwise it would have taken too long.

The other approach was to take advantage of
Rs matrix multiplication, which is implemented
very efficient, and getting rid of having to touch

9For more information see [6]

5

each pixel explicitly in a loop. With the help of
code supplied by Edzer J. Pebesma, we imple-
mented a filter based on the + matrix operator.
This implementation was unfortunately not very
generic. Since bigmemory doesn’t support matrix
access with a negative index it could not be tested.
Alternative ways for implementing such a filter
may exist, but could unfortunately not be deeper
looked into for this paper.

3.5. Test machine

Comparable results are accomplished by perform-
ing all tests on the same machine and on equal
data sets. R is started from command line and
other software that runs in parallel is kept to a
minimum.

• 2,063 MB RAM, 2x Intel(R) Core(TM),
2 Duo CPU (T7250@2.00GHz)

• Ubuntu 8.10 Intrepid, 2.6.27-9-generic, i686
GNU/Linux

3.6. Measuring performance

The large size of image data makes time a factor of
interest. If an image analysis (e. g. a simple filter
operation) would take 5–10 minutes, no produc-
tive environment could be established. The time
processing an image depends on several issues:

• efficiency of algorithms involved

• efficiency of data structures used

• memory access speed (RAM or ROM)

For the tests only memory usage in main mem-
ory and CPU time was considered and compared.
We did not take into account that ff uses tempo-
rary files where data is stored. Because bigmemory
doesn’t use temporary files a comparison does not
make sense10.

The results are plotted in section 4.

10This will be a new feature of the next version of
bigmemory and can be a topic for future evaluations.

3.6.1. Observing time

Standard Linux tools were used to trace the CPU
time of a process. Using top of version 3.2.7 in
batch mode is sufficient to observe particular at-
tributes of a process while running. Listing 2
shows an example. The attribute TIME+ shows
the cumulative CPU time used by a process. The
shown time of 0:00.80 means that R needed 800 ms
to start.

For the scenario it was interesting to differen-
tiate between several phases. R offers its own
build-in function to measure this (with a small
overhead). Using system.time(<function>) it was
possible to distinguish between these phases:

1. initialize the datastructure

2. read/import the image data

3. perform some image statistics

4. perform image process

5. write image back to file

Results can be found in the appendix, p. 14 ff.

3.6.2. Observing memory

Also, top was used to observe memory usage of
R when performing either with bigmemory or ff.
For this, two attributes were of interest. List-
ing 2 shows several attributes referring to memory
(taken from man top):

VIRT The total amount of virtual memory used
by the task. It includes all code, data and
shared libraries plus pages that have been
swapped out.

RES The non-swapped physical memory a task
has used.

DATA The amount of physical memory devoted
to other than executable code.

Static memory usage were not of interest, so for
the scenario only DATA was used. It shows clearly
how much memory R must allocate when working
with external data sets.

6

Listing 2: Memory usage (commandline)
henning@phoenix−work :~/ workdir /R$ top −bp ‘ p ido f R‘ | grep henning
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ DATA COMMAND
15334 henning 20 0 23196 16m 2624 S 0 0 .8 0 : 0 0 . 8 0 14m R
15334 henning 20 0 23196 16m 2624 S 0 0 .8 0 : 0 0 . 8 0 14m R
15334 henning 20 0 23196 16m 2624 S 0 0 .8 0 : 0 0 . 8 0 14m R
. . .

Listing 3: Read an image into datastructure
read image in to the g iven (pre−
i n i t i a l i z e d) da ta s t ruc tu r e ffOrBm

3 ffOrBm . readImage <− f unc t i on (img , ffOrBm
, band=1) {

6 ## get extent o f image
rowlength = nrow (img)
c o l l e n g t h = nco l (img)

9

read and s e t r a s t e r data row−by−row
f o r (row in 1 : rowlength) {

12 ffOrBm [row , 1 : c o l l e n g t h] <−
getRasterData (img ,
band , r eg i on . dim=c (1 , c o l l e n g t h) ,

15 o f f s e t=c (row−1 ,0))
}
r e l e a s e po in t e r and return ffOrBm

18 GDAL. c l o s e (img)
re turn (ffOrBm)

}

Listing 4: Write data back to file
1 ## wri t e image from the given data−

s t r u c t u r e ffOrBm back to image f i l e
ffOrBm . writeImage <− f unc t i on (ffOrBm ,

4 f i l ename , dr ive r , type="Byte ") {

c r e a t e datase t where to wr i t e on
7 image <− new (" GDALTransientDataset " ,

d r ive r , nrow (ffOrBm) , nco l (ffOrBm) ,
type=type)

10

wri t e row−by−row
f o r (row in 1 : nrow (ffOrBm)) {

13 putRasterData (image , ffOrBm [row ,
1 : nco l (ffOrBm)] ,
o f f s e t=c (row−1 ,0))

16 }
p e r s i s t t r a n s i e n t data
saveDataset (image , f i l ename)

19 c l o s eData s e t (image)
}

4. Results

During the tests we measured the time, each pack-
age uses to perform a scenario on each of two im-
ages available (described in section 3.1). The fol-
lowing sections describing the time and the mem-
ory usage refer to scenarios which processed sim-
ple operations like negation and incrementation.
Further operations going beyond these are de-
scribed afterwards.

4.1. Time

The whole time both packages needed to perform
on the small image differ not too much. The sev-
eral phases which form a whole scenario are quite
different, though.

A noteworthy point regards the use of the pa-
rameter dimorder in ff. As our algorithms per-

from a row-wise processing of the data, but the
default dimorder is column first, a big speedup
could be reached early in our algorithm devel-
opment phase. On initiating the ff object, the
paramter setting dimorder=c(2,1) lets ff switch
to a row-wise ordering.

Considerable differences can be noticed when
performing on the large image. ff does a bet-
ter performance here and is up to 30 s faster that
bigmemory.

The tests of datatypes (see section A.3) result in
a mentionable performance gain for ff of about 5 s
for the used image. This can be explained by the
smaller data size that has to be loaded from the
hard drive. The byte data (casted to raw) takes
11 MB storage in contrast to 43 MB when using
int. In opposition to that, bigmemory actually
slows down if a supposedly less storage intensive

7

data type is used. This might be caused by type
casting overhead, but is not investigated further
in this work.

Considering the several phases of the scenario,
big differences between the statistics calculation
are noticeable: bigmemory is very fast calculating
the statistics of an image. Whereas ff needs more
than 30 s, bigmemory is done with it within about
2 s (on the large image).

Nevertheless, ff works faster than bigmemory
(except one case). That’s quite surprising, since
ff must read/write from files stored on harddisk.
This bottleneck is payed off with a faster process-
ing phase. The longer this phase endures, the
greater the differences between ff and bigmemory
will be.

4.2. Memory

The memory used by ff while processing an im-
age varies very much. It’s very dependant to a
current phase of the scenario. Due to ff stores the
image data in temporary files, only one row has
to be processed (when doing a row-by-row algo-
rithm). This is quite memory saving. Similar to
the observed time, a memory overhead becomes
obvious when ff calculates the image statistics.
For that, the whole image must be loaded into
memory.

bigmemory acts kind of greedy. Once, it has al-
located the memory needed for the image it will
not be de-allocated until the scenario stops and a
garbage collection is performed. This behaviour
leads to a quite constant memory usage, wherein
no overheads can be observed—during these mem-
ory peaks ff uses nearly twice of the memory al-
located by bigmemory.

4.3. Laplacian edge sharpening

During our tests we started to process the naive
algorithm over the images. Appendix A.1 shows
the resuls. Since the algorithm took much longer
than an image analysis should perform (more than
5–10 minutes), we decided to perform it on a
smaller image (512x512 pixels) to see, how the
packages behave. The naive algorithm is defi-
nitely not fit for production use.

To get rid of touching each pixel explicitly, we
took advantage of Rs matrix multiplication in a
second approach. With the help of Edzer J. Pebesma,
we implemented a filter based on an efficient im-
plementation of the + matrix operator. Unfortu-
nately bigmemory wasn’t able to handle negative
indexes, so only ff could offer results here. These
weren’t too bad and kept far below the 5 minute
limit, but took up to 1,5 GB RAM during run-
time. See the results in figure 3 on page 10.

4.4. Comparison to EBImage (exemplarily)

To get a comparison to an existing approatch deal-
ing with image data in R we’ve chosen EBImage.
EBImage belongs to the Bioconductor package bun-
dle. Whereas EBImage offers broad functionality
doing image analysis it unfortunately lacks of sup-
porting image analysis with a spatial context.

Listing 5: R code using EBImage.
> system . time (wr i t e (negate (readImage (

"DEMO_ETHIOPIA_1_IMAGES_SWIR_1. t i f ")) ,
3 " negate . t i f "))

user system e lapsed
54 .240 70 .301 125.604

Since .bsq files are not supported by EBImage,
we used the .tif file (size 10 MB) to perform a
part of the workflow scenario (referred to example
from [12]): The workflow was to read, to negate
and to write the image back into a new file (see
listing 5).

In comparison to our regular workflow, both ff
and bigmemory were enormously faster (includ-
ing statistics calculation!). In addition to this
EBImage needed much more memory while per-
forming (up to 440 MB instead of the 120 MB used
by ff).

This results may arise from the fact, that the
extra export/import of an image to exernal soft-
ware brings out more performance loss than could
be payed off from the rapidness of the external
software.

8

0.0000 0.0005 0.0010 0.0015

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

bm−ff−ger1−incr

CPU time+[?.??m]

D
at

a
[M

B
]

ff
bigmemory

(a) CPU time from 0.000–165.554 s.

0.0000 0.0005 0.0010 0.0015

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

bm−ff−ger1−neg

CPU time+[?.??m]

D
at

a
[M

B
]

ff
bigmemory

(b) CPU time from 0.000–169.798 s.

Figure 1: Calculating the 70 MB file.

0e+00 1e−04 2e−04 3e−04 4e−04

20
40

60
80

10
0

12
0

bm−ff−eth1−incr

CPU time+[?.??m]

D
at

a
[M

B
]

ff
bigmemory

(a) CPU time from 0.000–28.850 s.

0.000 0.001 0.002 0.003

14
15

16
17

18
19

20
21

bm−ff−eth1−neg

CPU time+[?.??m]

D
at

a
[M

B
]

ff
bigmemory

(b) CPU time from 0.000–26.349 s.

Figure 2: Calculating the 10 MB file.

9

user system elapsed

Init 5.236 0.996 8.284
Read 26.734 0.664 31.328
Summary 20.265 4.996 25.373
Process 71.136 19.905 338.189
Write 19.045 1.504 25.040

428.214

0
50

0
10

00
15

00

ff−bash−out−ger1−filtR−int

CPU time+ [hh:mm:ss]

D
at

a
[M

B
]

00:00 00:01 00:02 00:03

Figure 3: Laplacian filter running on ff (70 MB file)

5. Discussion

Quickly, the user can do lots of things wrong when
he tries to load large images into R in a naive way.
At the beginning of our research we also stepped
into several of those pitfalls. To make R even han-
dle large data like satellite images, we have tried
the packages ff and bigmemory which can hold
these kind of data in external C-matrices by giving
the user R methods at hand to manipulate them.
Besides the similar way of storing the data in ex-
ternal matrices, both packages handle the data
quite different. The data plots highlight these dif-
ferent concepts of data handling very clearly.

Under the given circumstances, ff seems to
hold back some of its potential to us. The pre-
sentation “A first glimpse into ’R.ff’” [2] mentions
functions that could be of high value when work-
ing with images, namely fftile (tiling mecha-
nisms) and ffbatch (batch processing). While im-
age analysis would certainly gain from implement-
ing more standard R functions for ff, especially
the limited data types in the free ff versions, the
vmodes, partly put brakes on the performance in
our scenario.

It is surprising why bigmemory has performed
less fast than ff did in general. By looking at
the phases in particular, bigmemory does its job
very well when calculating statistics but falls back
when performing the image process. Both pack-

ages were tested under the same premises and due
to bigmemory doesn’t has to pass a bottleneck ff
has to (like harddisk access), so we assume the
access mechanisms of bigmemory aren’t as well as
in ff (ff utilizes indexes).

For ff the size of data will not be a problem.
Since writing data to harddisk, the limit of a file
would be theoretically given by the partition type
used (in our case 2 Tebibyte on ext3). For now
bigmemory holds everything in RAM, so it is lim-
ited to RAM size and swapping capabilities of the
operating system. The new version of bigmemory
looks more promising. It will also be able to store
data as temporal files.

We could measure a good performance on ini-
tialization of the datastructures and the read/
write phases. Also the duration of simple process-
ings, to negate and to increment, are acceptible.

Our method is flexible regarding the input and
output data, which is based on the utilization of
rgdal, that handles many formats. If georefer-
encing information is given with meta files, like in
our example, a simple renaming and copying op-
eration can preserve it. If these kind of informa-
tion are tagged within the image file (e. g. geotif)
one has to consider to extract this information
and hold it besides the processing. After image
analysis, it can be written back to a file. For op-
erations which change the size, the orientation,
etc. one has to bear in mind that the georefer-

10

ence information “backup” will not be taken into
account.

6. Conclusions and future work

We began this work with an evaluation of existing
packages in the general area of image analysis. In
parallel we evaluated different approaches to the
memory problem in R. We tried to combine these
two areas to be able to use R for image analysis
and lay the basis for remote sensing with large
image data.

Is our approach better than the existing tools?
If effectivity is the indicator, then our answer is
yes. We show a way of handling of large im-
age data exists, but its practicality still has to
be proven.

A very comfortable program could handle the
adapted handling of the data and the analysis in-
visible to the user. She just gives the original
data source, the method to perfrom on that data
and a vector of parameters to a function. We did
not achieve a transient combination with existing
image analysis packages. As to our current knowl-
edge, the algorithms (most of which are probably
well-known nowadays) would have been to imple-
mented newly on top of the presented data struc-
tures.

Our simple yet powerful algorithm for image
analysis in the spatial domain (admittedly mostly
applicable in the area of preprocessing) provides
a basis for advanced methods like morphological
image processing [6]. It lies in the nature of pixel-
oriented processing that every pixel and his neigh-
borhood is visited, and so a considerable amount
of processing can be expected.

Providing a comfortable interface to these meth-
ods, like higher level functions for dilation or ero-
sion, was not the scope of this work. An im-
plementation of these methods, that include a
customized optimization to the underlying imple-
mentation, would provide an easily usable pack-
age for a wider audience. To achieve that level of
applicability, the quality of the methods needs to
be raised regarding special cases. For example fil-
ter effects at the image borders that are currently
not treated can be avoided through padding the

image.
Moreover automized methods that choose an

appropriate technique to handle the data depend-
ing on its size and the operation are conceivable.
The advanced user can take into account by him-
self that if the data is small enough for R to load
without problems, then that approach is logically
the best way to go.

Open questions that arise at the end of our
work are: How do the presented methods scale,
especially with several bands (multivariate analy-
sis)? How can image data with its inherit channel
structure be stored more efficiently in our stor-
age systems? Another approach towards the used
data type might also be a good enhancement, for
example storing bands in a special data structure
as raw types.

As far as the effeciency for a general use in im-
age analysis is concerned, the R-based methods
have to compete with widely accepted specialized
tools, e. g. MATLAB ® [16]. The amount work
that is necessary to include external tools into R
or vice versa should be weighted critically against
a completely R-based approach. This applies even
more to advanced image analysis methods like fea-
ture extraction and pattern or object recognition,
whose algorithms most definetely can be imple-
mented in R.

We imagine that further investigation in how Rs
statistical features can be transferred to images
will show the value of imagine analysis performed
within a R environment—the actual processing is
possible and R can provide more than just a con-
venient interface.

References

[1] 52° North. ILWIS 3.5 Open. 2009. url:
http://52north.org/.

[2] Nenadic Zucchini Adler Oehlschlaegel.
“Large atomic data in R: package ’ff’”. In:
2008.

[3] Bioconductor Development Core Team.
Bioconductor, Open Source software for
bioinformatics. 2009. url: http : / / www .
bioconductor . org / packages / release /
bioc/.

11

http://52north.org/
http://www.bioconductor.org/packages/release/bioc/
http://www.bioconductor.org/packages/release/bioc/
http://www.bioconductor.org/packages/release/bioc/

[4] Oleg Nenadic Jens Oehlschlägel Walter Zuc-
chini Daniel Adler Christian Gläser. CRAN
– Package ff. 2008. url: http://cran.r-
project.org/web/packages/ff/index.
html.

[5] R Development Core Team. What is R – In-
troduction to R. 2009. url: http://www.r-
project.org/about.html.

[6] Rafael C. Gonzalez and Richard E. Woods.
Digital Image Processing (3rd Edition). Up-
per Saddle River, NJ, USA: Prentice-Hall,
Inc., 2008. isbn: 013168728X.

[7] GRASS Development Team. Geographic
Resources Analysis Support System. 2009.
url: http://grass.itc.it/.

[8] Jacob van Etten, Robert Hijmans, Yann
Chemin, Sonia Asilo. r-forge – Package
r-gis. 2009. url: http://r- forge.r-
project.org/projects/r-gis/.

[9] Michael Kane Jay Emerson. “The R Package
bigmemory: Supporting Efficient Compu-
tation and Concurrent Programming with
Large Data Sets”. In: 2008.

[10] MinGW Development Team. MinGW
Home. 2009. url: http : / / www . mingw .
org/.

[11] Red Hat Cygwin Development Team. Cyg-
win Home. 2009. url: http : / / www .
cygwin.com/.

[12] Richard Redweik and Johannes Trame.
“Handling large images in R”. Seminar pre-
sentation. 2009.

[13] SAGA Development Team. SAGA, System
for Automated Geoscientific Anaylis. 2009.
url: http://www.saga-gis.org.

[14] Phil Spector. Data Manipulation with
R. ISBN 978-0-387-74730-9. New York:
Springer, 2008.

[15] R Development Core Team. R Data Im-
port/Export. 2006. url: http://cran.r-
project.org/doc/manuals/R-data.html.

[16] Inc. The MathWorks. MATLAB ®. url:
http://www.mathworks.com/products/
matlab/.

12

http://cran.r-project.org/web/packages/ff/index.html
http://cran.r-project.org/web/packages/ff/index.html
http://cran.r-project.org/web/packages/ff/index.html
http://www.r-project.org/about.html
http://www.r-project.org/about.html
http://grass.itc.it/
http://r-forge.r-project.org/projects/r-gis/
http://r-forge.r-project.org/projects/r-gis/
http://www.mingw.org/
http://www.mingw.org/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.saga-gis.org
http://cran.r-project.org/doc/manuals/R-data.html
http://cran.r-project.org/doc/manuals/R-data.html
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/

A. Appendix

A.1. Image data

We’ve used the following data files as input for our analysis:

A.1.1. Satellite scene somewhere in Germany

• http://image2000.jrc.ec.europa.eu/

• File de33_194025.bsq

• .bsq filesize 334 MB

• Comes with a bunch other (small) meta files
bqw Worldfile
bsq Data (strict seperation of the spectral bands)
hdr .bsq specific information (nrows, ncols, pixeltype, etc.)
mta Image 2000 Meta file
prj Projection in WKT

• Each band has size of ca. 68 MB

A.1.2. Satellite scene somewhere in Ethiopia

• http://www.orthocoverage.com/download/

• File DEMO_ETHIOPIA_1_IMAGES_SWIR_1.tif

• .tif filesize 11 MB

• Comes with a two meta files
tfw Worldfile
prj Projection in WKT

• one band

13

http://image2000.jrc.ec.europa.eu/
http://www.orthocoverage.com/download/

A.2. Simple operations

A.2.1. de33_194025.bsq

Increment with bigmemory

user system elapsed

Init 0.180 0.352 0.533
Read 31.110 0.356 31.706
Summary 2.168 0.000 2.170
Process 74.752 0.316 75.676
Write 52.339 1.376 56.002

165.554

0
10

0
20

0
30

0
40

0

bm−bash−out−ger1−incr

CPU time+ [hh:mm:ss]
D

at
a

[M
B

]

00:00:00 00:01:00 00:02:00

Increment with ff

user system elapsed

Init 5.436 0.944 9.491
Read 27.106 0.820 31.144
Summary 21.217 6.092 33.548
Process 30.290 0.644 31.328
Write 19.733 1.524 22.784

128.295

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

ff−bash−out−ger1−incr

CPU time+ [hh:mm:ss]

D
at

a
[M

B
]

00:00:00 00:01:00 00:02:00

14

Negate with bigmemory

user system elapsed

Init 0.168 0.356 0.526
Read 31.642 0.416 33.669
Summary 2.164 0.004 2.183
Process 75.625 0.664 76.728
Write 52.299 1.344 56.692

169.798

0
10

0
20

0
30

0
40

0

bm−bash−out−ger1−neg

CPU time+ [hh:mm:ss]

D
at

a
[M

B
]

00:00:00 00:01:00 00:02:00 00:03:00

Negate with ff

user system elapsed

Init 5.352 0.992 8.724
Read 27.558 0.688 30.817
Summary 23.869 7.452 41.444
Process 30.682 0.772 32.560
Write 20.018 1.464 25.270

138.815

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

ff−bash−out−ger1−neg

CPU time+ [hh:mm:ss]

D
at

a
[M

B
]

00:00:00 00:01:00 00:02:00

15

A.2.2. DEMO_ETHIOPIA_1_IMAGES_SWIR_1.tif

Increment with bigmemory

user system elapsed

Init 0.040 0.064 0.102
Read 5.856 0.044 5.970
Summary 0.284 0.004 0.290
Process 10.641 0.040 10.718
Write 7.436 0.192 7.773

28.850 20
30

40
50

60
70

bm−bash−out−eth1−incr

CPU time+ [hh:mm:ss]

D
at

a
[M

B
]

00:00:00 00:00:10 00:00:20

Increment with ff

user system elapsed

Init 0.596 0.068 0.680
Read 7.036 0.136 7.329
Summary 2.804 0.660 3.528
Process 8.593 0.076 8.748
Write 5.984 0.180 6.215

26.500 20
40

60
80

10
0

12
0

ff−bash−out−eth1−incr

CPU time+ [hh:mm:ss]

D
at

a
[M

B
]

00:00:00 00:00:10 00:00:20 00:00:30

16

Negate with bigmemory

user system elapsed

Init 0.016 0.056 0.070
Read 5.824 0.024 5.874
Summary 0.384 0.000 0.384
Process 10.813 0.024 10.895
Write 7.368 0.144 7.573

24.796 20
30

40
50

60
70

bm−bash−out−eth1−neg

CPU time+ [hh:mm:ss]

D
at

a
[M

B
]

00:00:05 00:00:15 00:00:25

Negate with ff

user system elapsed

Init 0.656 0.048 0.742
Read 6.676 0.124 6.885
Summary 2.776 0.604 3.388
Process 8.593 0.088 8.729
Write 5.908 0.176 6.605

26.349 20
40

60
80

10
0

12
0

ff−bash−out−eth1−neg

CPU time+ [hh:mm:ss]

D
at

a
[M

B
]

00:00:00 00:00:10 00:00:20 00:00:30

17

A.3. Comparing different datatypes on DEMO_ETHIOPIA_1_IMAGES_SWIR_1.tif

bigmemory used with integer and short Table shows data collected for short.

user system elapsed

Init 0.028 0.016 0.045
Read 5.828 0.040 5.896
Summary 9.249 0.388 9.679
Process 10.044 0.036 5.896
Write 7.100 0.100 7.216

28.732

0e+00 1e−04 2e−04 3e−04 4e−04 5e−04

20
40

60
80

10
0

12
0

14
0

bm−eth1−neg−int−short

CPU time+[?.??m]

D
at

a
[M

B
]

short
integer

ff used with integer and raw Table shows data collected for raw.

user system elapsed

Init 0.632 0.016 0.655
Read 6.444 0.028 6.505
Summary 2.840 0.280 3.146
Process 7.961 0.040 8.138
Write 5.584 0.116 5.761

24.205

0.00000 0.00005 0.00010 0.00015 0.00020 0.00025 0.00030 0.00035

20
40

60
80

10
0

12
0

ff−eth1−neg−int−raw

CPU time+[?.??m]

D
at

a
[M

B
]

integer
raw

18

B. Using a filter kernel

B.1. bigmemory

user system elapsed

Init 0.004 0.000 0.005
Summary 0.256 0.024 0.287
Read 0.616 0.016 0.634
Process 159.218 0.084 160.076
Write 0.624 0.000 0.638

161.640

16
18

20
22

24
26

bm−bash−out−smallest−filter

CPU time+ [hh:mm:ss]
D

at
a

[M
B

]

00:00:00 00:01:00 00:02:00

B.2. ff

user system elapsed

Init 0.024 0.000 0.023
Summary 0.104 0.012 0.119
Read 0.796 0.016 0.821
Process 311.383 0.084 312.709
Write 0.864 0.000 0.866

314.538

14
15

16
17

18
19

20
21

ff−bash−out−smallest−filter

CPU time+ [hh:mm:ss]

D
at

a
[M

B
]

00:00 00:01 00:02 00:03 00:04 00:05

19

	Introduction
	R and its limitations
	Approaches and Solutions
	Objective and motivation
	Overview of the paper

	The tested packages
	bigmemory
	ff

	Data and Methods
	Scenario
	Data
	Data handling
	Operations
	Simple operations
	Kernel operations

	Test machine
	Measuring performance
	Observing time
	Observing memory

	Results
	Time
	Memory
	Laplacian edge sharpening
	Comparison to EBImage (exemplarily)

	Discussion
	Conclusions and future work
	Appendix
	Image data
	Satellite scene somewhere in Germany
	Satellite scene somewhere in Ethiopia

	Simple operations
	de33_194025.bsq
	DEMO_ETHIOPIA_1_IMAGES_SWIR_1.tif

	Comparing different datatypes on DEMO_ETHIOPIA_1_IMAGES_SWIR_1.tif

	Using a filter kernel
	bigmemory
	ff

